Inflammatory Bowel Disease and Diet

Lindsey Albenberg, DO
Attending Physician
The Children’s Hospital of Philadelphia

*With help from Sarah Weston, RD, CSP, LDN
Etiologic Theories for IBD

- Genetic Predisposition
- Mucosal Immune System (Adaptive/Innate)
- Environmental Triggers (Luminal Bacteria, Infection)
Dysbiosis of Gut Microbiota in IBD

- Gut microbiota in patients with IBD are enriched for taxa belonging to the *Proteobacteria* and *Actinobacteria* phyla with a decrease in representation of *Firmicutes*.
Is There a Relationship Between Diet, the Gut Microbiota, and IBD?

Clinical Relevance of Diet and IBD

• CCFA maintains an Information Resource Center that receives more than 14,000 inquiries per year, of which approximately 65% ask for dietary advice.

• Patients with IBD frequently identify dietary components that cause increased symptoms (lactose, gluten, etc.) and often follow very restricted diets.

• Patients desire therapies that do not suppress the immune system.

• Diet and the gut microbiota are the two biggest environmental factors to which the gut is exposed.
Diet is Associated with New Onset IBD

- High dietary intakes of total fats, PUFAs, omega-6 and meat were associated with an increased risk of CD and UC.

- High fiber and fruit intakes were associated with decreased CD risk.

- High vegetable intake was associated with decreased UC risk.

Dietary Factors and UC

- Study of 191 patients with UC in remission
- Followed over 1 year
- 52% of patients relapsed during this time period
- Consumption of meat, particularly red and processed meat increased the likelihood of relapse

Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il102/2 mice

Devkota et al. Nature 2012;487:104
Diet in animal models of IBD

<table>
<thead>
<tr>
<th>Immunologically-mediated colitis</th>
<th>Food</th>
<th>Reference</th>
<th>Methods/animal model</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary milk fat</td>
<td>Devkota, S.</td>
<td>Dietary-fat-induced</td>
<td>Did wild type and IBD-/- animals were fed a high-fat diet.</td>
<td>Cholesterol levels were significantly reduced in the IBD-/- group compared to the wild type group.</td>
</tr>
<tr>
<td>High cholesterol</td>
<td>Gao, Y.</td>
<td>Atherosclerotic diet</td>
<td>Feeding mice a high-cholesterol diet resulted in atherosclerotic plaque formation.</td>
<td>Plaque formation was significantly reduced in mice fed the statin formulation.</td>
</tr>
<tr>
<td>High Fat</td>
<td>Gruber, H.</td>
<td>High-fat diet</td>
<td>Mice fed a high-fat diet showed increased body weight and reduced insulin sensitivity.</td>
<td>The high-fat diet group had higher fasting glucose levels compared to the control group.</td>
</tr>
<tr>
<td>Green tea polyphenols</td>
<td>Ozawa, T.</td>
<td>Green tea polyphenols</td>
<td>Feeding mice green tea polyphenols resulted in reduced inflammation and oxidative stress.</td>
<td>Green tea polyphenols improved antioxidant levels and attenuated severity of colitis analogous to sulfasalazine.</td>
</tr>
<tr>
<td>Semi-synthetic diet</td>
<td>Wagener, S.</td>
<td>Semisynthetic diet</td>
<td>Feeding mice a semi-synthetic diet improved colonic inflammation.</td>
<td>The semi-synthetic diet group showed reduced inflammation compared to the control group.</td>
</tr>
<tr>
<td>Omega-3 fatty acids</td>
<td>Boss, W.</td>
<td>Omega-3 fatty acids</td>
<td>Dietary supplementation with omega-3 fatty acids improved colonic inflammation.</td>
<td>Omega-3 supplementation reduced pro-inflammatory cytokine levels.</td>
</tr>
<tr>
<td>Omega-3</td>
<td>Whiting</td>
<td>Omega-3 fatty acid</td>
<td>Feeding mice omega-3 fatty acids reduced pro-inflammatory cytokines.</td>
<td>Omega-3 supplementation reduced the severity of colitis.</td>
</tr>
<tr>
<td>TGF-beta</td>
<td>Schirren, W.</td>
<td>TGF-beta</td>
<td>Feeding mice TGF-beta reduced colonic inflammation.</td>
<td>TGF-beta treatment significantly reduced the severity of colitis.</td>
</tr>
<tr>
<td>TGF-beta</td>
<td>Kojima</td>
<td>TGF-beta</td>
<td>Feeding mice TGF-beta reduced colonic inflammation.</td>
<td>TGF-beta treatment significantly reduced the severity of colitis.</td>
</tr>
<tr>
<td>Red meat</td>
<td>Le Leu</td>
<td>Red meat</td>
<td>Feeding mice red meat increased colonic inflammation.</td>
<td>Red meat consumption was associated with increased colonic inflammation.</td>
</tr>
<tr>
<td>Green tea and other polyphenols</td>
<td>Bruckner</td>
<td>Green tea polyphenols</td>
<td>Feeding mice green tea polyphenols reduced colonic inflammation.</td>
<td>Green tea polyphenols showed beneficial effects on colonic inflammation.</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Nagy-Szakal</td>
<td>Curcumin</td>
<td>Feeding mice curcumin reduced colonic inflammation.</td>
<td>Curcumin treatment significantly reduced pro-inflammatory markers.</td>
</tr>
<tr>
<td>Olive oil</td>
<td>Sakuma</td>
<td>Olive oil</td>
<td>Feeding mice olive oil reduced colonic inflammation.</td>
<td>Olive oil supplementation improved colonic inflammation.</td>
</tr>
<tr>
<td>Campestrino</td>
<td>Olive oil</td>
<td>Olive oil</td>
<td>Feeding mice olive oil reduced colonic inflammation.</td>
<td>Olive oil supplementation improved colonic inflammation.</td>
</tr>
<tr>
<td>MCT-rich formula</td>
<td>Papadis</td>
<td>MCT-rich formula</td>
<td>Feeding mice a MCT-rich formula reduced colonic inflammation.</td>
<td>MCT-rich formula treatment significantly reduced pro-inflammatory markers.</td>
</tr>
<tr>
<td>Red meat</td>
<td>Le Leu</td>
<td>Red meat</td>
<td>Feeding mice red meat increased colonic inflammation.</td>
<td>Red meat consumption was associated with increased colonic inflammation.</td>
</tr>
<tr>
<td>Green tea and other polyphenols</td>
<td>Bruckner</td>
<td>Green tea polyphenols</td>
<td>Feeding mice green tea polyphenols reduced colonic inflammation.</td>
<td>Green tea polyphenols showed beneficial effects on colonic inflammation.</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Nagy-Szakal</td>
<td>Curcumin</td>
<td>Feeding mice curcumin reduced colonic inflammation.</td>
<td>Curcumin treatment significantly reduced pro-inflammatory markers.</td>
</tr>
<tr>
<td>Olive oil</td>
<td>Sakuma</td>
<td>Olive oil</td>
<td>Feeding mice olive oil reduced colonic inflammation.</td>
<td>Olive oil supplementation improved colonic inflammation.</td>
</tr>
<tr>
<td>Campestrino</td>
<td>Olive oil</td>
<td>Olive oil</td>
<td>Feeding mice olive oil reduced colonic inflammation.</td>
<td>Olive oil supplementation improved colonic inflammation.</td>
</tr>
<tr>
<td>MCT-rich formula</td>
<td>Papadis</td>
<td>MCT-rich formula</td>
<td>Feeding mice a MCT-rich formula reduced colonic inflammation.</td>
<td>MCT-rich formula treatment significantly reduced pro-inflammatory markers.</td>
</tr>
</tbody>
</table>

Chemicals used:

- Cholesterol
- Omega-3 fatty acids
- TGF-beta
- Curcumin
- Olive oil
- Green tea polyphenols

Results:

- Dietary milk fat and high cholesterol diets significantly increased body weight and reduced insulin sensitivity.
- Green tea polyphenols and omega-3 fatty acids significantly reduced inflammation and oxidative stress.
- TGF-beta and curcumin treatments significantly reduced the severity of colitis.
- Olive oil supplementation improved colonic inflammation.
- Red meat consumption was associated with increased colonic inflammation.
- Green tea polyphenols and olive oil showed beneficial effects on colonic inflammation.
- Curcumin treatment significantly reduced pro-inflammatory markers.
- MCT-rich formula treatment significantly reduced pro-inflammatory markers.
Diet studies in humans with IBD

- Eliminate Foods
- Add anti-inflammatory substances or prebiotics
- Enteral nutritional therapy
Enteral Nutritional Therapy For IBD

• A therapy which has been used for almost 4 decades
• Involves the use of a specific enteral formula as nutritional therapy
• Formula most often administered through an NG tube
• Exclusive (100% of calories) for a defined period of time versus...
• Partial (80-90% of calories) with the remainder of calories from whole foods

EN Therapy: “European” Protocol

Induction

- **Exclusive** enteral nutrition with an elemental, semi-elemental, or polymeric formula
 - Duration: 4 – 12 weeks

Maintenance Therapy

- **Nutritional therapy**: Repeat 4 week cycle of exclusive enteral nutrition every 3 – 4 months
- **Medical therapy**: 6-MP/AZA/MTX
CHOP Enteral Nutrition Therapy (ENT)

Induction
- 8-12 weeks
- 80-90% of estimated needs from ENT
- 10-20% food
- NG tube/oral/combo

Maintenance
- Post induction to . . . ?
- Lower % EN by 10-15% in 8-10 week intervals
 - \(\downarrow\) # of days
 - \(\downarrow\) volume
- Repeat as able
- Liberalize oral intake
Formula Selection

THERE IS NO MAGIC FORMULA!

<table>
<thead>
<tr>
<th>Suggested Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG tube</td>
</tr>
<tr>
<td>Whey predominant 1.5kcal/ml</td>
</tr>
<tr>
<td>Oral??</td>
</tr>
<tr>
<td>Intact protein 1.5kcal/ml</td>
</tr>
<tr>
<td>Milk allergy</td>
</tr>
<tr>
<td>Soy or amino acid 1.0kcal/ml</td>
</tr>
</tbody>
</table>
http://www.youtube.com/watch?v=4xwRrezN9Qw
A Novel Enteral Nutrition Protocol for the Treatment of Pediatric Crohn’s Disease

Kernika Gupta, BA,* Angela Noble, MD,† Kelly E. Kachelries, RD,* Lindsey Albenberg, DO,* Judith R. Kelsen, MD,* Andrew B. Grossman, MD,* and Robert N. Baldassano, MD*

• Retrospective review of CHOP ENT protocol
• 43 patients with CD treated from 1998-2010
• 87% response rate and 65% remission rate
• Decreases in ESR and CRP, increase in albumin
• Increases in weight and height
How Does Enteral Nutritional Therapy Work?

- Reduction in luminal antigens and food exclusion
- Direct anti-inflammatory effects of the formula
 - Improved nutrition
 - Changes in the gut microbes
- Ongoing studies at CHOP
Open

An Altered Gut Microbiome Profile in a Child Affected by Crohn’s Disease Normalized After Nutritional Therapy

Valeria D'Argenio, MD1,2, Vincenza Precone, PhD1,2, Giorgio Casaburi, MS1,2, Erasmo Miele, MD3, Massimo Martinelli, MD3, Annamaria Staiano, MD, PhD3, Francesco Salvatore, MD, PhD1,4 and Lucia Sacchetti, PhD1,2
Is Enteral Nutritional Therapy Effective?
Polymeric Diet Alone vs. Steroids for Active Pediatric CD (Induction Therapy)

• Methods (n=37)
 – Prospective 10 week randomized controlled open-label trial
 – Newly diagnosed children receive:
 • polymeric formula (n=18) or steroids (n=19)

 – Primary outcomes at 10 weeks
 • Clinical remission (PCDAI≤10)
 • Mucosal healing
 – Decrease in both endoscopic and histologic scores by > 50% when compared to baseline

Polymeric Diet Alone vs. Steroids for Active Pediatric CD (Induction Therapy)

Clinical improvement

- Enteral nutrition: n=19
- Corticosteroids: n=18

Healing of GI tract

P<0.05

To assess the capacity of EN therapy to induce small bowel mucosal healing by CE

Methods: 15 children with active CD

- 9 onset
- 6 relapse

In all patients CE was performed before and after an 8 week course of exclusive EN with a polymeric formula
To assess the capacity of EN therapy to induce small bowel mucosal healing by CE

Before

Ileocecal valve

After

Same ileal region
Safety of EN therapy for Crohn’s Disease

• No immunosuppression and beneficial effects on microbiota
• Generally well tolerated
• Most common side effects: Nausea, flatulence, abdominal pain, diarrhea

Nutritional therapy vs. 6-MP as maintenance therapy in CD

- Prospective 24 month randomized controlled open-label trial (n=95)
 - Inclusion: CDAI ≤ 150
 - Randomly assigned to:
 - 6-MP (0.5-1.5 mg/kg/day n=30)
 - ED (elemental diet ≥ 900 kcal/day n=32)
 - Control (5-aminosalicylic acid n=33)
 - Relapse: ≥ 200 CDAI

Nutritional therapy vs. 6-MP as maintenance therapy in CD

Results:
• At 24 months, patients who maintained remission were 60%, 46.9% and 27% for 6-MP, ED and Controls
• No significant difference between 6-MP and ED

Prevention of Post-op Recurrence with Enteral Nutrition for CD

• Methods: (prospective, non-randomized)
 – After resection for ileal or ileocolonic CD

 – Patients received either:
 • 50% of caloric needs from overnight elemental NG feed for 1 year (n=20)
 OR
 • Normal diet (n=20)

Prevention of Post-op Recurrence with Enteral Nutrition for CD

Clinical Recurrence

% Clinical Recurrence

At 1 year

Endoscopic Recurrence

% Endoscopic Recurrence

Physician Attitudes in Pediatrics

Does enteral therapy work for all IBD patients?

Clinical Remission at Week 8

- Ileal: 92%
- Ileocolonic: 82%
- Colonic: 50%

\[p=0.05 \]

Endoscopic Scores

- Ileocolonic: \[p=0.01 \]
- Colonic: \[p=0.3 \]

Enteral Nutritional Therapy: Where should this be in our treatment algorithm?

• Should be offered to all newly diagnosed patients with CD who can tolerate nutritional therapy
 – Special groups
 • Malnourished patients
 • Younger patients
 • Growth failure
 • History of cancer
 • Family history of lymphoma?

• Consider when failing other therapies
Other diets for IBD

The FODMAPS Diet

<table>
<thead>
<tr>
<th>Excess Fructose</th>
<th>Lactose</th>
<th>Fructans</th>
<th>Galactans</th>
<th>Polyols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit: apple, mango, nashi, pear, tinned fruit in natural juice, watermelon</td>
<td>Milk from cows, goats or sheep, custard, ice cream, yogurt</td>
<td>Vegetables: asparagus, beetroot, broccoli, brussel sprouts, cabbage, eggplant, fennel, garlic, leek, okra, onion, shallots, spring onion</td>
<td>Legumes: baked beans, chickpeas, kidney beans, lentils</td>
<td>Fruit: apple, apricot, avocado, blackberry, cherry, lychee, nashi, nectarine, peach, pear, plum, prune, watermelon, vegetables: cauliflower, bell pepper, mushroom, sweet corn, sweeteners: sorbitol, mannitol, isomalt, maltitol, xylitol</td>
</tr>
</tbody>
</table>
Can a Semi-vegetarian Diet Prevent Relapse of Crohn’s Disease?

- Adult patients with Crohn disease
- S/P medically or surgically induced remission
- Only treated with 5-ASA after remission achieved
- All were prescribed semi-vegetarian diet

Can a semi-vegetarian diet prevent relapse of Crohn’s disease?

![Graph showing remission rates for semi-vegetarian and omnivorous diets.](image)

- **Remission (%)**
- **Semi-vegetarian diet**
- **Omnivorous diet**

No. at risk

<table>
<thead>
<tr>
<th>Diet Type</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-vegetarian</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Omnivorous</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

P = 0.0003, Log-rank test
Sigall-Boneh and colleagues recently found that a combination of partial enteral nutritional therapy and a restricted diet could induce remission and mucosal healing in 70% of patients.

So What do I tell my patients?

• Enteral nutritional therapy is an effective therapy for certain patients with IBD

• Other general messages (but not enough data to know for sure!)
 – Red meat in moderation
 – The typical “Western” diet is probably not good.
 • Processed foods, preservatives, long shelf life
 – Fiber may be beneficial (fruits, vegetables, whole grains)
 – Less restrictive exclusion diets may be future therapies
 – Constantly reassess!
Dietary changes to manage symptoms and diets to treat disease are not the same!!

Symptoms
- Low fiber diet (low residue diet) when disease is very active
- Low lactose if small bowel disease
- Low gluten or gluten free
- Work with a dietician and constantly reassess
- Should not be long-term!

Treatment (decreases inflammation)
- Enteral nutritional therapy
Conclusions

• In the future, diet might be used to treat active IBD, maintain remission, or even prevent disease
• ENT has consistently demonstrated effectiveness in CD and so interest has turned towards exclusion diets
• Patients often create, in essence, their own exclusion diets based on foods that exacerbate symptoms. This does not treat inflammation in contrast to ENT.
• We need to better understand the mechanism of ENT so that less restrictive diets can be designed
• We need better mechanisms of studying diet
• The future is promising!
Thank You!