The Gut Microbiome in Health and Disease

Judith Kelsen, MD
The Children’s Hospital of Philadelphia
Comprised of Bacteria, Viruses, others (Archaea, Eukaryotes)

Distinctive microbiomes at each body site (gut, lung, skin, mucosa etc.)

The Gut Microbiome
- Human gut is home to ~100 trillion bacterial cells
- Density of 10^{11} to 10^{12} per gram in the colon
- Genome size of microbiota at least 100-fold greater than human
- Large numbers species present, most uncultured

Host-Microbial Mutualism of the Gut

Host benefits to the bacteria
• Provides a unique niche
• Intestinal mucus provides a source of nutrition

Bacteria benefits to the host
• Fermentation of indigestible carbohydrates to assist digestion
• Biotransformation of conjugated bile acids
• Urease activity participates in nitrogen balance
• Synthesis of certain vitamins
• Metabolize drugs
• Education of the mucosal immune system
Gut Microbiome Development

Colonization of the gut begins at birth

Transition to the highly distinct, highly differentiated adult microbiota
Community Evolves Towards an Adult-like Configuration by the Toddler years

Factors that affect gut microbiome composition

- Environment
- Genetics
- Other Host Factors
- Antibiotics
- Inflammation
- Diet

Science. 2011 May 20;332(6032):970-4
Science. 2011 Jul 1;333(6038):101-4
Science. 2011 Oct 7;334(6052):105-8
Elements of Modern Lifestyle Lead to Changes in Gut Microbiota

- Improved sanitation
- Less crowded living conditions
- Decline in parasite and *H. pylori* infections
- Vaccinations
- Increased antibiotic use
- Sedentary lifestyles
- Caesarean section
- Refrigeration
- Food processing
- Diet changes
Diet and the Gut Microbiota
Greatest change occurs with introduction of solid foods

Clustering of Gut Microbiome into Enterotypes is Associated with Long-term Diet

The *Bacteroides* enterotype,
Highly associated with animal protein and saturated fats which suggests that meat consumption is associated with a Western diet

The *Prevotella* enterotype,
High values for carbohydrates and simple sugars indicating association with a carbohydrate-based diet more typical of agrarian societies
Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa

African Diet: High Fiber and carbohydrate, low animal fat and protein

European Diet: High animal fat and protein, low fiber

De Filippo C, et al. PNAS 2010: 14691-96
HUP/CHOP Microbiome Project: Longitudinal analysis of microbiome under controlled feeding

Changes detectable within 24 hours!

Each color represents a different subject

Methods
454 pyrosequencing of 16S rDNA

Day 1 is different than all other days!!
The Gut Microbiota in Health and Disease

Cerf-Bensussan N, Gaboriau-Routhiau V, Nature Reviews Immunology 10, 735-744 (October 2010)
Gut Microbiome and Disease

- **Diabetes:** Type 1 DM and Type 2 DM
- **Obesity:** dysbiosis?
- **Atherosclerosis:** Oral, gut and plaque microbiota; Microbial metabolism of choline to TMA
- **Asthma:** Sanitized environment
- **Colon Cancer:** Enterotoxigenic *Bacteroides fragilis* and *Fusobacterium*
- **Inflammatory Bowel Disease:** Dysbiosis
- **Clostridium difficile:** dysbiosis
C. Difficile and Dysbiosis of Gut microbiota

- Gram positive, anaerobic, spore forming bacterium
- Infection is due to:
 - toxins TcdA and TcDB
 - NAP1/027/B1 strain: increased virulence
- Frequently secondary to antibx use that result in a dysbiotic gut microbiota
 - Decrease in abundance of members of the Bacteroidetes and Firmicutes phyla, increase in Proteobacteria (enterobacteraceae)
Reset of Disturbed Microbiota

Fuentes et al, ISME journal 2014
Environment + Host Genotype = Disease

• Increased Incidence

• Geographic distribution
 – Clustering in industrialized nations

• Immigration studies
 – Adoption of disease risk of the host country within 1 or 2 generations

• Genomic advances
 – Contribution of host genetics to the risk of disease development is significantly less than 50%
IBD and the Gut Microbiome
Associations of Environmental Factors with New Onset IBD

- Infectious gastroenteritis
- Early antibiotic use has been associated with IBD
 - Tetracycline
 - Oral antibiotics for ear infection
Trends in Incidence of IBD

N. America/Europe

Immigrants from low incidence region have rates comparable to high incidence natives.

Trend not explained by genetics, but environmental changes (Westernized diet, gut microbiome)

Asia
Clinical Evidence Implicating a Role of Bacteria in the Pathogenesis of IBD in Humans

• Inflammation occurs predominantly in the terminal ileum and colon, where the greatest concentrations of bacteria are found

• Antibiotics can be a modestly effective treatment for Crohn disease

• Surgical diversion of the fecal stream is an effective treatment for Crohn disease
 • Inflammation is known to recur upon restoration of the fecal flow
Dysbiosis of Gut Microbiota

Potentially injurious species in susceptible hosts

- *Bacteroides vulgatus*, *B. thetaiotaomicron*
- *Escherichia coli* (adherent/invasive)
- *Enterococcus faecalis* (nonpathogenic)
- *Klebsiella pneumoniae*
- *Fusobacterium varium*
- *Helicobacter hepaticus* and other intestinal species
- *Bifidobacterium animalis*

Protective species

- *Lactobacillus* species
- *Bifidobacterium* species
- *Escherichia coli*
- *Bacteroides thetaiotaomicron*
- *Faecalibacterium prausnitzii*

Factors that affect gut microbiome composition

- Environment
- Genetics
- Other Host Factors
- Antibiotics
- Inflammation
- Diet

Science. 2011 May 20;332(6032):970-4
Science. 2011 Jul 1;333(6038):101-4
Science. 2011 Oct 7;334(6052):105-8
Identification of Disease Associated Pathways

Epithelial barrier
- GNA12*, HNF4A, CDH1, ERRF1, MUC19, ITLN1*

Restitution
- REL, PTGER4, NKK2-3, STAT3, ERRF1, HNF4A, PLA2G2A/E

Solute transport
- SLC9A4, SLC22A5, SLC22A4*, AQP12A/B, SLC9A3, SLC26A3

Paneth cells
- ITLN1*, NOD2*, ATG16L1*, XBPI*

Innate mucosal defence
- NOD2*, ITLN1*, CARD9*, REL, SLC11A1, FCGR2A/B

Immune cell recruitment
- CCL11/CCL2/CCL7/CCL8, CCR6, IL8RA/IL8RB, MST1*

Antigen presentation
- ERAP2*, LNP6P, DENND1B

IL-23/T_H17
- IL23R*, JAK2, TYK2*, STAT3, ICOSLG, IL21, TNFSF15*

T-cell regulation
- NDFIP1, TNFSF8, TAGAP, IL2, IL2Rv, TNFRSF9, PIM3, IL7R*, IL12R, IL23PRD1, ICOSLG, TNFSF8, IFNG, IL12

B-cell regulation
- IL5, IKZF1, BACH2, IL7R*, IRF5

Immune tolerance
- IL10, IL27*, SBN02, CREM, IL1R1/IL1R2, NOD2*

Cellular responses

Autophagy
- ATG16L1*, IRGM, NOD2*, LRRK2, CUL2, PARK7, DAP

Apoptosis/necroptosis
- FASLG, THADA*, DAP, PUS10, MST1*

ER stress
- CPEB4, ORMEL3, SERINC3, XBPI*

Carbohydrate metabolism
- GCKR*, SLC2A4RG

Intracellular logistics
- VAMP3, KIF21B, TTL8, FGFR1OP, CEP72, TPP1

Oxidative stress
- PRDX5, BACH2, ADO, GPX4, GPX1*, SLC22A4, LRRK2, NOD2*, CARD9*, HSPA6, DLD, PARK7, UTS2*, PEX13

Cell migration
- ARPC2, LSP1, AAMP

IBD-related processes

- Microbial sensors
- Recruitment of mediators
- Signal amplification
- Transducers and effectors

Microbiota, diet

Microbiota, diet

Plasma cell

B cell

T_H17

T_reg cell

IgA

Xavier 2011
“Bacterially”-Generated Phenotypes

Germ-Free

Commensal Bacteria

E. faecalis

E. coli

Genomics and IBD

Primary Immunodeficiencies

Kugathasan, *IBD* 2014
Very Early-Onset IBD

• Diagnosed ≤5 years of age
• Frequently different phenotype and more severe disease presentation
• Often unresponsive to conventional therapy
• No standard guidelines:
 – evaluation and treatment

Candidate Pathways for VEO-IBD?
Whole Exome Sequencing
Gut Microbiota Development

Factors affecting the microbiome
- Genetics
- Birth route
- Geography
- Hygiene
- Stress
- Diet/nutrition
- Drugs

Microbiome complexity and stability

Disease

Healthy

Perturbation

Infectious diseases, metabolic diseases, and inflammatory disorders

- Protect against pathogens
- Train/stimulate immune function
- Supply nutrients, energy, vitamins, SCFA

- Inflammation (local > systemic)
- Oxidative stress
- Increase in Gram negative bacteria
- Infection (opportunistic/pathogenic)
- Altered metabolite production

Early onset

Adult onset

Late onset

Birth 3 years Adult Elderly

Kostick et al, Gastro 2014
The microbiome shapes the innate immune response and vice versa.